# Recent results from Project 8

Ben Monreal, UCSB

# Studying neutrinos without detecting them

In Fig. 1, the end of the distribution curve for  $\mu = 0$  and for large and small values of  $\mu$  is sketched. The greatest similarity to the empirical curves is given by the theoretical curve for  $\mu = 0$ .

$$^{14}_{6}C \rightarrow ^{14}_{8}N e^{-}$$
Spin = 0 Spin = 1 Spin = 1/2

 $^{214}_{83}Bi \rightarrow ^{214}_{84}Po^{+}e^{-}$ 

E = ?

Ee = anywhere



Fig. 1. The end of the distribution curve for  $\mu = 0$  and for large and small values of  $\mu$ .

Hence, we conclude that the rest mass of the neutrino is either zero, or, in any case, very small in comparison to the mass of the electron. 10 In the

E = ?

$$^3H \rightarrow ^3He^+ + e^- + \overline{V}_e$$



$$^3H \rightarrow ^3He^+ + e^- + \overline{\nu}_e$$



Current limit 2.0 eV, BR < 10<sup>-10</sup>

 $^3H \rightarrow ^3He^+ + e^- + \overline{V}_e$  KATRIN goal 0.2 eV, BR <  $10^{-12}$ 





 $^3H \rightarrow ^3He^+ + e^- + \overline{V}_e$ 

Current limit 2.0 eV, BR < 10<sup>-10</sup> KATRIN goal 0.2 eV, BR < 10<sup>-12</sup>





## KATRIN experiment

Goal:  $m_v = 0.2 \text{ eV}$  sensitivity

Tritium source 10<sup>11</sup> decays/second magnetic transport of electrons

Electrostatic high-pass filter 0.9 eV-wide cutoff





UCSB-built calibration gun



Shipped to Germany Feb 2015

# Why KATRIN doesn't scale up well

Spectrometer radius =  $r^{I}$ 

Expensive, thick-wall Unprecedented size

Spectrometer area =  $r^2$ 

Vacuum load ~ area Whole area needs instrumenting

Spectrometer volume =  $r^3$ 

Whole volume is a background source



Harder to clear
Penning/bottle traps = r??

Detector-related backgrounds =  $r^2$ 

Magnet cost  $(r^2 L)^{0.6} = r^{1.8++}$ 

IT HTC magnet,
passive cooling to space

Ix differential pumping
vent to space

Electrons guided along flux return loops
in empty space. XHV = low background

UCSB B. Monreal Yale 12/15

SpaceTRIN\* is probably easier than 3-folding KATRIN

(\*I am making this up)

# The Project 8 concept

## Cyclotron radiation

- emitted by mildly relativistic electrons
- Coherent, narrowband
- 10<sup>-15</sup> W per electron

$$P_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \frac{2q^2 \omega_c^2}{3c} \frac{\beta_1^2}{1 - \beta^2}$$

- Electron energy contributes to velocity v, power P, frequency ω
  - Can we detect this radiation,
     measure v, P, ω, and determine E
     ± I eV?







 $T_2$  gas at P < ImT









# Waveguide cell



Gas = <sup>83m</sup>Kr 1.8 hour decay Monoenergetic e<sup>-</sup> lines at 17.8, 30, 32 keV



B. Monreal BNL 2/16

### RF chain and reciever











Spectrum of IQ Data 17kev in 1000mA harmonic trap-2014.07.02.14.58.02.664.MAT



Spectrum of IQ Data 17kev in 1000mA harmonic trap-2014.07.02.14.56.32.668.MAT



Spectrum of IQ Data 17kev in 1000mA harmonic trap-2014.07.02.14.57.47.031.MAT



Spectrum of IQ Data 17kev in 1000mA harmonic trap-2014.07.02.14.57.05.816.MAT





### Magnetic trap is a B field nonuniformity





#### Energy Histogram (bin width = 50.0 eV)



Run 2: knocking down the noise

Cold head rebuild Tighten screws (!) new DAQ



# Doppler shifts and nonuniformities













## Project 8 sensitivity estimates:

Small and high-density or large and low-density?







## Project 8 sensitivity estimates:

Small and high-density or large and low-density?



# Scaling up!

- Surprise! The signal ∝ f<sup>2</sup> dependence deceived us into starting work at high B
- Worse amplifiers and wider bandwidths mean noise  $\alpha$  f<sup>2</sup> too.
- Only problem with low f: size
  - low  $f = low \Delta f$
  - low  $\Delta f = \text{store } e^{-1} \text{ for long } \Delta f$
  - long  $\Delta t$  needs low pressure
  - Boyle's Law V = I/P



| f = I GHz<br>λ=30cm<br>B = 3.8 kG | 0.1 Ci<br>0.3 eV           | decay volume<br>I 0m long<br>2.6m diameter | 26000 amp-turns<br>per meter              |
|-----------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|
| One giant waveguide with 60 modes | 60x channels<br>Noise = 1K | single-mode SNR ~6<br>correlator SNR ~50   | sensitivity $m_{\beta} = 0.05 \text{ eV}$ |

| energy             | I/f |
|--------------------|-----|
| number of<br>modes | f   |

# Future Project 8

Phase II 2014 Proof of principle on 83mKr Learn by experience

Phase II 2016 T<sub>2</sub> spectrum
First "multi-mode" detection

2016—a) atomic tritium R&D
2018 b) antenna array scaleup

Very large experiment

loffe trap

for atomic H

sensitive below IH scale

Vacuum wall

Antiprotons

Antiprotons

Electrodes

2018—

Annihilation

**Phase IV** 

#### ROACH FPGA architecture for DSP



#### Novel magnet engineering task



Surplus MRI magnet

• 10<sup>-6</sup> uniformity in central 50cm

 Now installed at UW and ramped to 1.45T

